Fall Detection in Individuals With Lower Limb Amputations Using Mobile Phones: Machine Learning Enhances Robustness for Real-World Applications

نویسندگان

  • Nicholas Shawen
  • Luca Lonini
  • Chaithanya Krishna Mummidisetty
  • Ilona Shparii
  • Mark V Albert
  • Konrad Kording
  • Arun Jayaraman
چکیده

BACKGROUND Automatically detecting falls with mobile phones provides an opportunity for rapid response to injuries and better knowledge of what precipitated the fall and its consequences. This is beneficial for populations that are prone to falling, such as people with lower limb amputations. Prior studies have focused on fall detection in able-bodied individuals using data from a laboratory setting. Such approaches may provide a limited ability to detect falls in amputees and in real-world scenarios. OBJECTIVE The aim was to develop a classifier that uses data from able-bodied individuals to detect falls in individuals with a lower limb amputation, while they freely carry the mobile phone in different locations and during free-living. METHODS We obtained 861 simulated indoor and outdoor falls from 10 young control (non-amputee) individuals and 6 individuals with a lower limb amputation. In addition, we recorded a broad database of activities of daily living, including data from three participants' free-living routines. Sensor readings (accelerometer and gyroscope) from a mobile phone were recorded as participants freely carried it in three common locations-on the waist, in a pocket, and in the hand. A set of 40 features were computed from the sensors data and four classifiers were trained and combined through stacking to detect falls. We compared the performance of two population-specific models, trained and tested on either able-bodied or amputee participants, with that of a model trained on able-bodied participants and tested on amputees. A simple threshold-based classifier was used to benchmark our machine-learning classifier. RESULTS The accuracy of fall detection in amputees for a model trained on control individuals (sensitivity: mean 0.989, 1.96*standard error of the mean [SEM] 0.017; specificity: mean 0.968, SEM 0.025) was not statistically different (P=.69) from that of a model trained on the amputee population (sensitivity: mean 0.984, SEM 0.016; specificity: mean 0.965, SEM 0.022). Detection of falls in control individuals yielded similar results (sensitivity: mean 0.979, SEM 0.022; specificity: mean 0.991, SEM 0.012). A mean 2.2 (SD 1.7) false alarms per day were obtained when evaluating the model (vs mean 122.1, SD 166.1 based on thresholds) on data recorded as participants carried the phone during their daily routine for two or more days. Machine-learning classifiers outperformed the threshold-based one (P<.001). CONCLUSIONS A mobile phone-based fall detection model can use data from non-amputee individuals to detect falls in individuals walking with a prosthesis. We successfully detected falls when the mobile phone was carried across multiple locations and without a predetermined orientation. Furthermore, the number of false alarms yielded by the model over a longer period of time was reasonably low. This moves the application of mobile phone-based fall detection systems closer to a real-world use case scenario.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring Functional Capability of Individuals with Lower Limb Amputations Using Mobile Phones

To be effective, a prescribed prosthetic device must match the functional requirements and capabilities of each patient. These capabilities are usually assessed by a clinician and reported by the Medicare K-level designation of mobility. However, it is not clear how the K-level designation objectively relates to the use of prostheses outside of a clinical environment. Here, we quantify particip...

متن کامل

An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network

In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...

متن کامل

Using Mobile Phone Applications in Teaching and Learning Process

This quantitative, qualitative study investigates the usage of mobile phone applications in teaching and learning processes. The study aims to identify the benefits, difficulties, and resolutions of using mobile phone applications. The study was conducted in the English Department at Hebron University at the second semester of the academic years 2015/2016. The study focuses on the Business Engl...

متن کامل

Current Trends in Research on Mobile Phones in Language Learning

This study aimed at examining the major mobile wireless technologies, that is,mobile phones and the possibilities associated with them, currently in use in theeducational domains, with an emphasis on language teaching and learning practices.Accordingly, some of the most typical studies using different functions of mobilephones such as e-mail, multimedia capabilities, Wireless Application Protoc...

متن کامل

Malware Detection In Mobile Through Analysis of Application Network Behavior By Web Application

This system detects the mobile malware by analyzing suspicious network activities through the traffic analysis. In our system, the detection algorithms which we are using are works as modules inside the Open Flow controller, and the security rules can be imposed in real time. Here, we are using new behavior-based anomaly detection system which is used for identifying meaningful deviations in a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017